

December 2001 Revised December 2001

74ALVC16722 Low Voltage 22-Bit Register with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16722 low voltage 22-bit register contains twenty-two non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The design has been optimized for use with JEDEC compliant 200 pin DIMM modules.

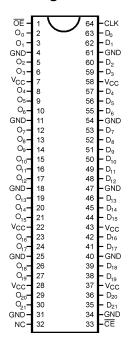
The 74ALVC16722 is designed for low voltage (1.65V to 3.6V) $\rm V_{CC}$ applications with I/O capability up to 3.6V.

The 74ALVC16722 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n)
 4.1ns max for 3.0V to 3.6V V_{CC}
 5.1ns max for 2.3V to 2.7V V_{CC}
 9.2ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Meets JEDEC registered module specifications
- Latchup conforms to JEDEC JED78
- ESD performance:

Human body model > 2000V Machine model > 200V


Note 1: To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver

Ordering Code:

Order Number	Package Number	Package Description
74ALVC16722MTD	MTD64	64-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

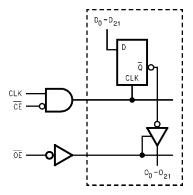
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
CE	Clock Enable Input (Active Low)
CLK	Clock Input
D ₀ - D ₂₁	Data Inputs
O ₀ - O ₂₁	3-STATE Outputs

Truth Table


CLK	CE	ŌĒ	D _n	O _n
Х	Х	Н	Х	Z
X	Н	L	X	O_n
\uparrow	L	L	L	L
\uparrow	L	L	Н	Н
L or H	L	L	Х	On

- H = Logic HIGH L = Logic LOW
- X = Don't Care, but not floating
- Z = High Impedance $O_n = Previous O_n before LOW-to-HIGH Clock Transition$
- 1 = LOW-to-HIGH Clock Transition

Functional Description

The ALVC16722 contains twenty-two D-type flip-flops with 3-STATE standard outputs. The twenty-two flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-HIGH Clock (CLK) transition, when the Clock-Enable ($\overline{\text{CE}}$) is LOW. The 3-STATE standard outputs are controlled by the Output-Enable (OE). When OE is HIGH, the standard outputs are in high impedance mode but this does not interfere with entering new data into the flip-flops.

Logic Diagram

Absolute Maximum Ratings(Note 2)

 $\begin{tabular}{lll} Supply Voltage (V_{CC}) & -0.5V to +4.6V \\ DC Input Voltage (V_I) & -0.5V to 4.6V \\ \end{tabular}$

Output Voltage (V $_{\rm O}$) (Note 3) $-0.5 \mbox{V}$ to V $_{\rm CC}$ +0.5V

DC Input Diode Current (I_{IK})

 $V_I < 0V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_O < 0V$ DC Output Source/Sink Current

 (I_{OH}/I_{OL}) ±50 mA

DC V_{CC} or GND Current per

Supply Pin (I_{CC} or GND) ± 100 mA

Storage Temperature Range (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4)

Power Supply

-50 mA

Operating 1.65V to 3.6V Input Voltage (V_1) 0V to V_{CC}

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
-			(V)			
V _{IH}	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		$I_{OL} = 12mA$	2.3		0.7	V
			2.7		0.4	
		$I_{OL} = 24 \text{ mA}$	3		0.55	
I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	3.6		±5.0	μΑ
OZ	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
СС	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ

AC Electrical Characteristics

		T _A = -40° C to $+85^{\circ}$ C, R _L = 500Ω								
Symbol	Parameter	C _L = 50 pF			C _L = 30 pF			Harden		
Syllibol		V $_{CC}$ = 3.3V \pm 0.3V		V _{CC} = 2.7V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		ns
t _{PHL} , t _{PLH}	Propagation Delay CLK to Bus	1.3	4.1	2.0	5.1	1.5	4.6	2.0	9.2	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.1	4.0	1.3	5.0	0.8	4.5	1.5	9.0	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.1	3.7	1.3	4.7	0.8	4.2	1.5	7.6	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	2.0		2.0		2.0		3.0		ns
t _H	Hold Time	0.0		0.0		0.0		0.5		ns

Capacitance

Symbol	Parameter		Conditions	$T_A = +25^{\circ}C$		Units
Зупівої			Conditions	V _{CC}	Typical	Ullits
C _{IN}	Input Capacitance		$V_I = 0V$ or V_{CC}	3.3	3.5	pF
C _{OUT}	Output Capacitance		V _I = 0V or V _{CC}	3.3	5.5	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3	13	pF
Ì				2.5	13	þΓ

I_{OUT} - V_{OUT} Characteristics

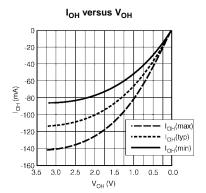
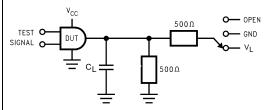
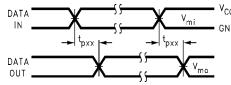


FIGURE 1. Characteristics for Output - Pull Up Driver

FIGURE 2. Characteristics for Output - Pull Down Driver

AC Loading and Waveforms




TABLE 1. Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _L
t _{PZH} , t _{PHZ}	GND

FIGURE 3. AC Test Circuit

TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z_0 = 50Ω

Symbol	V _{cc}							
Symbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V	1.8V ± 0.15V				
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2				
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2				
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V				
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V				
V _L	6V	6V	V _{CC} *2	V _{CC} *2				

OUTPUT CONTROL

The property of the property o

FIGURE 4. Waveform for Inverting and Non-inverting Functions $t_r = t_f \leq 2.0 ns, \, 10\% \ to \ 90\%$

FIGURE 5. 3-STATE Output High Enable and Disable Times for Low Voltage Logic $t_r=t_f\leq 2.0ns,\,10\%\ to\ 90\%$

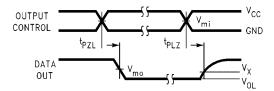


FIGURE 6. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic $t_r=t_f\!\le\!2.0ns,\,10\%$ to 90%

Physical Dimensions inches (millimeters) unless otherwise noted -A-0.65 TYP AAAAAA I AAAAAA 9.20 8.10 6.10±0.10 -B-4.05 0.2 C B A ALL LEAD TIPS 0.50 PIN #1 IDENT. -LAND PATTERN RECOMMENDATION ALL LEAD TIPS 0.90 +0.15 SEE DETAIL A 12 MAX □ 0.1 C -C-0.09-0.20 0.10±0.05 ♦ 0.13 M A BS CS 1 0.25M A 12.00° TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS R0.16 GAGE PLANE 0.25 NOTES: CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION EF, REF NOTE 6, DATE 7/93. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, 0.60±0.10 AND TIE BAB EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD64REVB

64-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD64

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com